Transverse diffusion of laminar flow profiles to produce capillary nanoreactors.
نویسندگان
چکیده
We introduce transverse diffusion of laminar flow profiles (TDLFP), the first generic method for mixing two or more reactants inside capillaries. Conceptually, solutions of reactants are injected inside the capillary by pressure as a series of consecutive plugs. Due to the laminar nature of flow inside the capillary, the nondiffused plugs have parabolic profiles with predominantly longitudinal interfaces between them. After injection, the plugs are mixed by transverse diffusion; longitudinal diffusion does not contribute to mixing. To prove the principle, we used TDLFP to mix two reactants-an enzyme and its substrate. After mixing the reactants by TDLFP, we incubated reaction mixtures for different periods of time and measured the reaction kinetics. We found that the reaction proceeded in time- and concentration-dependent fashion, thus confirming that the reactants were mixed by TDLFP. Remarkably, the experimental reaction kinetics were not only in qualitative agreement but also in good quantitative agreement with theoretically predicted ones. TDLFP has a number of enabling features. By facilitating the preparation of reaction mixtures inside the capillary, TDLFP lowers reagent consumption to nanoliters (microliters are required for conventionally mixing reagents in a vial). The reaction products can be then analyzed "on-line" by capillary separation coupled with optical, electrochemical, or mass spectrometric detection. The combination of TDLFP with capillary separation will be an indispensable tool in screening large combinatorial libraries for affinity probes and drug candidates: a few microliters of a target protein will be sufficient to screen thousands of compounds. The new method paves the road to a wide use of capillary nanoreactors in different areas of physical and life sciences.
منابع مشابه
Mathematical model for mixing reactants in a capillary microreactor by transverse diffusion of laminar flow profiles.
Transverse diffusion of laminar flow profiles (TDLFP) was recently suggested as a generic approach for mixing reactants inside a capillary microreactor. Conceptually, solutions of reactants are injected inside the capillary by high pressure as a series of consecutive plugs. Because of the laminar nature of the flow inside the capillary, the nondiffused plugs have parabolic profiles with predomi...
متن کاملCell lysis inside the capillary facilitated by transverse diffusion of laminar flow profiles (TDLFP).
Chemical cytometry studies the molecular composition of individual cells by means of capillary electrophoresis or capillary chromatography. In one of its realizations an intact cell is injected inside the capillary, the plasma membrane is disrupted to release the cellular contents into the separation buffer, and, finally, the molecules of interest are separated and detected. The solubilization ...
متن کاملNoise-Induced Stability Analysis of a Capillary Flow Microreactor with Mixing by Radial Diffusion of Laminar Flow Profiles
To overcome the problem of fluid mixing in capillary tubes, the induction of radial diffusion of laminar flow profiles (RDLFP) was proposed recently, together with a mathematical. Since, under realistic conditions, continuous flow capillary reactors are influenced by noise in the feed streams, the stability of such a reactor for a system of three liquids was analyzed through its largest Lyapuno...
متن کاملTurbulent flow in capillary gas chromatography : evaluation of a theoretical concept by Golay
Early in 1989, the late Marcel Golay derived a theory for turbulent flow capillary gas chromatography. He assumed that the flow pattern under turbulent conditions consists of a turbulent core separated from the tube wall by a very thin laminar flow layer. Further, it was assumed that the viscosity and the diffusion constant are uniform within the turbulent core. The core radius is a fraction p ...
متن کاملMathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)
A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 77 18 شماره
صفحات -
تاریخ انتشار 2005